The generator matrix 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 X 1 1 1 1 1 X 1 1 1 1 1 0 1 1 3X 1 1 3X 1 1 1 1 2X 1 1 1 1 1 1 1 1 1 1 1 1 2X 1 1 1 1 1 2X 1 1 1 1 3X 1 1 1 1 1 1 X 1 1 1 1 1 1 2X 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 1 1 0 1 1 2 3X+4 3 0 3X+1 2 1 3X+4 3 X X+2 4X+4 3X+1 X+3 1 X+2 X 2X+1 4X+4 X+3 1 2X+1 3X+2 X+4 0 3 1 3X 3X+3 1 3X 3X+3 1 4X+1 4X+1 2 3X+2 1 3X+4 X+4 X+1 3X+3 X 2X+2 4 X+1 2X 2X+2 4X+4 X+3 1 3X X+1 2X+2 X+4 2X+3 1 2X 4X+1 4 2X+3 1 3X+2 4 2X X+2 3X+1 4X+3 1 2X+1 2X+2 2X+4 X+1 3X 2X+3 1 X+2 3X+2 2 1 1 2X+4 X+4 4 3X+4 3X+1 4X+1 2 3X+2 3X 2X+4 1 4X+3 2X 0 0 3X 2X X 0 4X 2X X 2X 3X 4X 2X 3X 4X 4X X X 0 3X X 0 2X 3X 0 4X 2X X 3X 4X 0 4X 2X 2X 2X X 0 X 4X 3X 0 2X 0 3X X X 2X 3X 4X 4X 0 X 3X 3X 3X 2X X 4X 0 4X X 3X X 3X 3X 0 0 2X 2X X 4X 0 4X 3X 2X 0 4X 2X X 4X X 0 X 2X 4X 3X 2X 0 3X 4X 3X 2X 2X X 0 X 0 generates a code of length 97 over Z5[X]/(X^2) who´s minimum homogenous weight is 382. Homogenous weight enumerator: w(x)=1x^0+360x^382+540x^383+48x^385+760x^387+680x^388+56x^390+220x^392+140x^393+60x^397+40x^398+4x^400+80x^402+80x^403+20x^407+20x^408+12x^410+4x^415 The gray image is a linear code over GF(5) with n=485, k=5 and d=382. This code was found by Heurico 1.16 in 0.377 seconds.